Add like
Add dislike
Add to saved papers

Enhanced biodegradation of low and high-density polyethylene by novel bacterial consortia formulated from plastic-contaminated cow dung under thermophilic conditions.

The current study aimed to devise eco-friendly, safe, and cost-effective strategies for enhanced degradation of low- and high-density polyethylene (LDPE and HDPE) using newly formulated thermophilic microbial consortia from cow dung and to assess the biodegradation end products. The plastic-degrading bacteria from cow dung samples gathered from highly plastic-acclimated environments were enriched by standard protocols. The degradation ability was comprehended by zone of clearance method, and the percentage of degradation was monitored by weight reduction process. The best isolates were characterized by standard microbiological and molecular biology protocols. The best isolates were employed to form several combinations of microbial consortia, and the degradation end products were analyzed. The stability of 16S ribosomal DNA (rDNA) was predicted by bioinformatics approach. This study identified 75 ± 2, 55 ± 2, 60 ± 3, and 43 ± 3% degradation for LDPE strips, pellets, HDPE strips, and pellets, respectively, for a period of 120 days (p < 0.05) at 55 °C by the formulated consortia of IS1-IS4, and the degradation efficiency was found to be better in comparison with other formulations. The end product analysis by Fourier transform infrared, scanning electron microscopy, energy-dispersive spectroscopy, and nuclear magnetic resonance showed major structural changes and formation of bacterial biofilm on plastic surfaces. These novel isolates were designated as Bacillus vallismortis bt-dsce01, Psuedomonas protegens bt-dsce02, Stenotrophomonas sp. bt-dsce03, and Paenibacillus sp.bt-dsce04 by 16S rDNA sequencing and suggested good gene stability with minimum Gibb's free energy. Therefore, this study imparts substantial information regarding the utilization of these thermophilic microbial consortia from cow dung for rapid polyethylene removal.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app