JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Independent variability of microtubule perturbations associated with dystrophinopathy.

Human Molecular Genetics 2016 November 16
Absence of the protein dystrophin causes Duchenne muscular dystrophy. Dystrophin directly binds to microtubules in vitro, and its absence in vivo correlates with disorganization of the subsarcolemmal microtubule lattice, increased detyrosination of α-tubulin, and altered redox signaling. We previously demonstrated that the dystrophin homologue utrophin neither binds microtubules in vitro nor rescues microtubule lattice organization when overexpressed in muscles of dystrophin-deficient mdx mice. Here, we fine-mapped the dystrophin domain necessary for microtubule binding to spectrin-like repeats 20–22. We show that transgenic mdx mice expressing a full-length dystrophin/utrophin chimera completely lacking microtubule binding activity are surprisingly rescued for all measured dystrophic phenotypes, including full restoration of microtubule lattice organization. Conversely, despite the presence of dystrophin at the sarcolemma, β-sarcoglycan-deficient skeletal muscle presents with a disorganized and densified microtubule lattice. Finally, we show that the levels of α-tubulin detyrosination remain significantly elevated to that of mdx levels in transgenic mdx mice expressing nearly full-length dystrophin. Our results demonstrate that the microtubule-associated perturbations of mdx muscle are distinct, separable, and can vary independently from other parameters previously ascribed to dystrophin deficiency.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app