Add like
Add dislike
Add to saved papers

Analysis of Mesoscopic Structured 2-Propanol/Water Mixtures Using Pressure Perturbation Calorimetry and Molecular Dynamic Simulation.

In this paper we demonstrate the application of pressure perturbation calorimetry (PPC) to the characterization of 2-propanol/water mixtures. PPC of different 2-propanol/water mixtures provides two useful measurements: (i) the change in heat (ΔQ); and (ii) the [Formula: see text] value. The results demonstrate that the ΔQ values of the mixtures deviate from that expected for a random mixture, with a maximum at ~20-25 mol% 2-propanol. This coincides with the concentration at which molecular dynamics (MD) simulations show a maximum deviation from random distribution, and also the point at which alcohol-alcohol hydrogen bonds become dominant over alcohol-water hydrogen bonds. Furthermore, the [Formula: see text] value showed transitions at 2.5 mol% 2-propanol and at approximately 14 mol% 2-propanol. Below 2.5 mol% 2-propanol the values of [Formula: see text] are negative; this is indicative of the presence of isolated 2-propanol molecules surrounded by water molecules. Above 2.5 mol% 2-propanol [Formula: see text] rises, reaching a maximum at ~14 mol% corresponding to a point where mixed alcohol-water networks are thought to dominate. The values and trends identified by PPC show excellent agreement not only with those obtained from MD simulations but also with results in the literature derived using viscometry, THz spectroscopy, NMR and neutron diffraction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app