Add like
Add dislike
Add to saved papers

Continuous capnography monitoring during resuscitation in a transitional large mammalian model of asphyxial cardiac arrest.

BACKGROUND: In neonates requiring chest compression (CC) during resuscitation, neonatal resuscitation program (NRP) recommends against relying on a single feedback device such as end-tidal carbon dioxide (ETCO2 ) or saturations (SpO2 ) to determine return of spontaneous circulation (ROSC) until more evidence becomes available.

METHODS: We evaluated the role of monitoring ETCO2 during resuscitation in a lamb model of cardiac arrest induced by umbilical cord occlusion (n = 21). Lambs were resuscitated as per NRP guidelines. Systolic blood pressure (SBP), carotid and pulmonary blood flows along with ETCO2 and blood gases were continuously monitored. Resuscitation was continued for 20 min or until ROSC (whichever was earlier). Adequate CC was arbitrarily defined as generation of 30 mmHg SBP during resuscitation. ETCO2 thresholds to predict adequacy of CC and detect ROSC were determined.

RESULTS: Significant relationship between ETCO2 and adequate CC was noted during resuscitation (AUC-0.735, P < 0.01). At ROSC (n = 12), ETCO2 rapidly increased to 57 ± 20 mmHg with a threshold of ≥32 mmHg being 100% sensitive and 97% specific to predict ROSC.

CONCLUSION: In a large mammalian model of perinatal asphyxia, continuous ETCO2 monitoring predicted adequacy of CC and detected ROSC. These findings suggest ETCO2 in conjunction with other devices may be beneficial during CC and predict ROSC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app