Add like
Add dislike
Add to saved papers

Promoting Effect of α-Tocopherol on Beige Adipocyte Differentiation in 3T3-L1 Cells and Rat White Adipose Tissue.

Thermogenic adipocytes that are distinct from classical brown adipocytes (beige adipocytes) were identified in 2012. Beige adipocytes are also called inducible brown adipocytes because their differentiation is induced by a number of physiological stimuli, including adrenaline or myokines. PPARγ is the master regulator of adipogenesis and promotes thermogenic adipocyte differentiation. A PPARγ agonist also promotes thermogenic adipocyte differentiation in mouse white adipose tissues. The vitamin E analog α-tocopherol promotes PPARγ expression and induces mRNA expression of target genes. This study investigated the effects of vitamin E analogs on thermogenic adipocyte differentiation in mouse preadipocytes and rat white adipose tissues. We determined the effects of vitamin E analogs (α-tocopherol and γ-tocopherol) on PPARγ, PGC-1α, and uncoupling protein 1 (UCP1) gene expression in 3T3-L1 cells. UCP1 expression and the mitochondrial contents were confirmed in the cells using immunofluorescence. In an in vivo study, male SD-IGS rats were fed a high-fat diet (HFD), α-tocopherol-enriched HFD, or γ-tocopherol-enriched HFD for 8 weeks before the analysis of PPARγ, PGC-1α, UCP1, and CD137 gene expression, and pathological examinations of white adipose tissues. The expression of PPARγ, PGC-1α, and UCP1 increased in 3T3-L1 cells following α-tocopherol treatment in a concentration-dependent manner. UCP1 expression and mitochondrial content also increased in α-tocopherol-treated cells. According to the histopathological examinations of rat white adipose tissues, multilocular cells were observed in the α-tocopherol intake group. Furthermore, the gene expression levels of PGC-1α, UCP1, and CD137 increased in the α-tocopherol intake group. Our results suggest that α-tocopherol promotes thermogenic adipocyte differentiation in mammalian white adipose tissues.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app