Add like
Add dislike
Add to saved papers

Assessment of Bile Salt Export Pump (BSEP) Inhibition in Membrane Vesicles Using Radioactive and LC/MS-Based Detection Methods.

The bile salt export pump (BSEP, ABCB11) belongs to the ATP-binding-cassette superfamily of transporters and is predominately found in the liver. BSEP is an efflux transporter that plays a critical role in the secretion of bile salts into the bile. Inhibition of BSEP function by drugs can result in the buildup of bile salts in the liver and eventually leads to cholestasis and drug-induced liver injury (DILI). DILI is a major cause of withdrawal of drugs from the pharmaceutical market and accounts for >50% of acute liver failures. Therefore, early detection of BSEP inhibition by drugs can help to mitigate the possibility of BSEP-associated liver injury. This unit describes two assays that investigate the relationship between drug interference with BSEP function and liver injury using membrane vesicles prepared from Hi5 insect cells transfected with human BSEP. Comprehensive protocols for assessing BSEP inhibition in a 384-well format using radiolabeled and liquid chromatography/mass spectrometry (LC/MS)-based detection methods are described. © 2017 by John Wiley & Sons, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app