JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Mechanism of valproic acid-induced Fanconi syndrome involves mitochondrial dysfunction and oxidative stress in rat kidney.

Nephrology 2018 April
AIM: Drug-induced kidney proximal tubular injury and renal failure (Fanconi syndrome; FS) is a clinical complication. Valproic acid (VPA) is among the FS-inducing drugs. The current investigation was designed to evaluate the role of mitochondrial dysfunction and oxidative stress in VPA-induced renal injury.

METHODS: Animals received VPA (250 and 500 mg/kg, i.p., 15 consecutive days). Serum biomarkers of kidney injury and markers of oxidative stress were assessed. Moreover, kidney mitochondria were isolated and mitochondrial indices, including succinate dehydrogenase activity (SDA), mitochondrial depolarization, mitochondrial permeability transition pore (MPP), reactive oxygen species (ROS), lipid peroxidation (LPO), mitochondrial glutathione, and ATP were determined.

RESULTS: Valproic acid-treated animals developed biochemical evidence of FS as judged by elevated serum gamma-glutamyl transferase (γ-GT), alkaline phosphatase (ALP), creatinine (Cr), and blood urea nitrogen (BUN) along with hypokalaemia, hypophosphataemia, and a decrease in serum uric acid. VPA caused an increase in kidney ROS and LPO. Renal GSH reservoirs were depleted and tissue antioxidant capacity decreased in VPA-treated animals. Renal tubular interstitial nephritis, tissue necrosis, and atrophy were also evident in VPA-treated rats. Mitochondrial parameters including SDA, MMP, GSH, ATP and MPP were decreased and mitochondrial ROS and LPO were increased with VPA treatment. It was found that carnitine (100 mg/kg, i.p.) mitigated VPA adverse effects towards the kidney.

CONCLUSIONS: These data suggest that mitochondrial dysfunction and oxidative stress contributed to the VPA-induced FS. On the other hand, carnitine could be considered a potentially safe and effective therapeutic option in attenuating VPA-induced renal injury.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app