Add like
Add dislike
Add to saved papers

Allicin inhibits tubular epithelial-myofibroblast transdifferentiation under high glucose conditions in vitro.

Previous studies have suggested that tubular epithelial-mesenchymal transition (EMT) is an important event in renal tubulointerstitial fibrosis, which is a clinical characteristic of diabetic nephropathy. The present study aimed to investigate the effect of allicin, the major biological active component of garlic, on the EMT of a human renal proximal tubular epithelial cell line (HK-2) cultured under high glucose concentrations. HK-2 cells were exposed for 48 h to 5.5 or 25 mmol/l D-glucose, 25 mmol/l D-glucose plus allicin (2.5, 5, 10 or 20 µg/ml) or 25 mmol/l D-glucose plus 20 µmol/l PD98059, a selective inhibitor of the mitogen activated protein kinase/extracellular signal-regulated kinase (ERK) signaling pathway. The EMT of HK-2 cells was assessed by analyzing the protein expression of E-cadherin, α-smooth muscle actin (α-SMA), vimentin and collagen I via immunocytochemistry. In addition, reverse transcription-quantitative polymerase chain reaction and western blotting were used to detect the expression levels of transforming growth factor (TGF)-β1 and phosphorylated (p)-ERK1/2. Marked morphological changes were observed in HK-2 cells cultured under high glucose conditions, and these changes were abrogated by simultaneous incubation with allicin and PD98059. The expression levels of α-SMA, vimentin and collagen I were significantly increased in HK-2 cells cultured under high glucose conditions, as compared with those cultured under normal glucose conditions (P<0.01). Conversely, the expression levels of E-cadherin were significantly decreased upon stimulation with high glucose (P<0.01). Furthermore, the expression levels of TGF-β1 and p-ERK1/2 were significantly upregulated in HK-2 cells cultured under high glucose conditions, as compared with those cultured under normal glucose conditions (P<0.05). Allicin partially reversed the high-glucose-induced increase in α-SMA, vimentin and collagen I expression (P<0.01 at 20 µg/ml), increased the expression of E-cadherin, and significantly downregulated the high glucose-induced expression of TGF-β1 and p-ERK1/2 in a dose-dependent manner (P<0.05). The results of the present study suggested that high glucose concentrations induced the EMT of HK-2 cells, and that allicin was able to inhibit the EMT, potentially via regulation of the ERK1/2-TGF-β1 signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app