JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Bile duct ligation-induced biliary hyperplasia, hepatic injury, and fibrosis are reduced in mast cell-deficient Kit W-sh mice.

Activated mast cells (MCs) release histamine (HA) and MCs infiltrate the liver following bile duct ligation (BDL), increasing intrahepatic bile duct mass (IBDM) and fibrosis. We evaluated the effects of BDL in MC-deficient (KitW-sh ) mice. Wild-type (WT) and KitW-sh mice were subjected to sham or BDL for up to 7 days and KitW-sh mice were injected with cultured mast cells or 1× phosphate-buffered saline (PBS) before collecting serum, liver, and cholangiocytes. Liver damage was assessed by hematoxylin and eosin and alanine aminotransferase levels. IBDM was detected by cytokeratin-19 expression and proliferation by Ki-67 immunohistochemistry (IHC). Fibrosis was detected by IHC, hydroxyproline content, and by qPCR for fibrotic markers. Hepatic stellate cell (HSC) activation and transforming growth factor-beta 1 (TGF-β1) expression/secretion were evaluated. Histidine decarboxylase (HDC) and histamine receptor (HR) expression were detected by qPCR and HA secretion by enzymatic immunoassay. To evaluate vascular cells, von Willebrand factor (vWF) and vascular endothelial growth factor (VEGF)-C expression were measured. In vitro, cultured HSCs were stimulated with cholangiocyte supernatants and alpha-smooth muscle actin levels were measured. BDL-induced liver damage was reduced in BDL KitW-sh mice, whereas injection of MCs did not mimic BDL-induced damage. In BDL KitW-sh mice, IBDM, proliferation, HSC activation/fibrosis, and TGF-β1 expression/secretion were decreased. The HDC/HA/HR axis was ablated in sham and BDL KitW-sh mice. vWF and VEGF-C expression decreased in BDL KitW-sh mice. In KitW-sh mice injected with MCs, IBDM, proliferation, fibrosis, and vascular cell activation increased. Stimulation with cholangiocyte supernatants from BDL WT or KitW-sh mice injected with MCs increased HSC activation, which decreased with supernatants from BDL KitW-sh mice.

CONCLUSION: MCs promote hyperplasia, fibrosis, and vascular cell activation. Knockout of MCs decreases BDL-induced damage. Modulation of MCs may be important in developing therapeutics for cholangiopathies. (Hepatology 2017;65:1991-2004).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app