JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Curcumin represses mouse 3T3-L1 cell adipogenic differentiation via inhibiting miR-17-5p and stimulating the Wnt signalling pathway effector Tcf7l2.

Cell Death & Disease 2017 January 20
Understanding mechanisms underlying adipogenic differentiation may lead to the discovery of novel therapeutic targets for obesity. Wnt signalling pathway activation leads to repressed adipogenic differentiation while certain microRNAs may regulate pre-adipocyte proliferation and differentiation. We show here that in mouse white adipose tissue, miR-17-5p level is elevated after high fat diet consumption. miR-17-5p upregulates adipogenic differentiation, as its over-expression increased while its inhibition repressed 3T3-L1 differentiation. The Tcf7l2 gene encodes a key Wnt signalling pathway effector, and its human homologue TCF7L2 is a highly regarded diabetes risk gene. We found that Tcf7l2 is an miR-17-5p target and confirmed the repressive effect of Tcf7l2 on 3T3-L1 adipogenic differentiation. The natural plant polyphenol compound curcumin possesses the body weight lowering effect. We observed that curcumin attenuated miR-17-5p expression and stimulated Tcf7l2 expression in 3T3-L1 cells. These, along with the elevation of miR-17-5p expression in mouse epididymal fat tissue in response to high fat diet consumption, allowed us to suggest that miR-17-5p is among central switches of adipogenic differentiation. It activates adipogenesis via repressing the Wnt signalling pathway effector Tcf7l2, and its own expression is likely nutritionally regulated in health and disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app