Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Crucial Role of Donor Density in the Performance of Oxynitride Perovskite LaTiO 2 N for Photocatalytic Water Oxidation.

ChemSusChem 2017 March 10
LaTiO2 N photocatalysts were prepared by thermal ammonolysis of flux-synthesized La2 Ti2 O7 and La2 TiO5 , and were investigated for water oxidation. Though LaTiO2 N derived from La2 TiO5 appears defect-free by UV/Vis/near-IR and electron paramagnetic resonance (EPR) spectroscopy, its performance is much lower than that of conventional La2 Ti2 O7 -derived LaTiO2 N with defects. It is shown by Mott-Schottky analysis that La2 TiO5 -derived LaTiO2 N has significantly lower donor density; this can result in insufficient built-in electric field for the separation of photogenerated electrons and holes. The lower donor density is also consistent with the smaller difference between the Fermi level and the valence-band maximum, which accounts for a lower oxidative power of the holes. In light of this discovery, the donor density was increased substantially by introducing anion vacancies through annealing in Ar. This resulted in improved performance. The CoOx -assisted La2 TiO5 -derived LaTiO2 N annealed at 713 °C has a higher quantum efficiency (25 %) at 450 nm than high-performance conventional CoOx /LaTiO2 N (21 %).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app