JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Boosted large-scale production and purification of a thermostable archaeal phosphotriesterase-like lactonase for organophosphate decontamination.

Thermostable phosphotriesterase-like lactonases (PLLs) from extremophile archaea, like SsoPox from Sulfolobus solfataricus, are attractive biotechnological tools with industrial applications as organophosphate decontaminants, but their manufacturing still remains an unresolved issue because of the high costs and the low production yields. In this paper, for the first time, an efficient biotechnological process for the production and purification of a recombinant, engineered PLL, SsoPox W263F, expressed in E. coli, has been set up by studying new induction strategies, by designing high cell density cultivations and a new membrane-based downstream process. In fed batches, the enzyme production was boosted of 69-fold up to 4660.0 U L-1 using galactose as inducer in the replacement of IPTG; the process was scalable from 2.5 up to 150 L. By coupling a single thermo-precipitation step and an ultrafiltration process, a total enzyme recovery of 77% with a purity grade of almost 80% was reached.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app