JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Structural and metabolic differentiation between bipolar disorder with psychosis and substance-induced psychosis: An integrated MRI/PET study.

BACKGROUND: Bipolar disorder (BD) may be characterized by the presence of psychotic symptoms and comorbid substance abuse. In this context, structural and metabolic dysfunctions have been reported in both BD with psychosis and addiction, separately. In this study, we aimed at identifying neural substrates differentiating psychotic BD, with or without substance abuse, versus substance-induced psychosis (SIP) by coupling, for the first time, magnetic resonance imaging (MRI) and positron emission tomography (PET).

METHODS: Twenty-seven BD type I psychotic patients with (n=10) or without (n=17) substance abuse, 16 SIP patients and 54 healthy controls were enrolled in this study. 3T MRI and 18-FDG-PET scanning were acquired.

RESULTS: Gray matter (GM) volume and cerebral metabolism reductions in temporal cortices were observed in all patients compared to healthy controls. Moreover, a distinct pattern of fronto-limbic alterations were found in patients with substance abuse. Specifically, BD patients with substance abuse showed volume reductions in ventrolateral prefrontal cortex, anterior cingulate, insula and thalamus, whereas SIP patients in dorsolateral prefrontal cortex and posterior cingulate. Common alterations in cerebellum, parahippocampus and posterior cingulate were found in both BD with substance abuse and SIP. Finally, a unique pattern of GM volumes reduction, with concomitant increased of striatal metabolism, were observed in SIP patients.

CONCLUSIONS: These findings contribute to shed light on the identification of common and distinct neural markers associated with bipolar psychosis and substance abuse. Future longitudinal studies should explore the effect of single substances of abuse in patients at the first-episode of BD and substance-induced psychosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app