JOURNAL ARTICLE
MULTICENTER STUDY
OBSERVATIONAL STUDY
Add like
Add dislike
Add to saved papers

Modeling the Kinetics of Serum Glial Fibrillary Acidic Protein, Ubiquitin Carboxyl-Terminal Hydrolase-L1, and S100B Concentrations in Patients with Traumatic Brain Injury.

Glial fibrillary acidic protein (GFAP), ubiquitin carboxyl-terminal hydrolase-L1 (UCH-L1), and S100B have been shown to be predictive of patients with brain injury. Kinetics of these biomarkers in injured humans have not been extensively examined. This prospective multi-center study included patients with mild-to-moderate traumatic brain injury. Blood samples obtained at enrollment and every 6 h up to 24 h post-injury were assayed for GFAP, UCH-L1, and S100B. Random effects models examined changes in the biomarkers' level over time. A total of 167 patients were enrolled; mean age was 46.0 ± 17.8, 61.1% were male, 143 (85.6%) had a Glasgow Coma Scale score of 15, and 33 (19.8%) had a positive head computed tomography (CT) scan. Baseline median biomarker concentrations for all three were higher among CT-positive patients (p < 0.0001) but GFAP was the only biomarker that significantly increased over time among CT-positive patients relative to CT-negative patients (log transformed values 0.037; 95% confidence interval 0.02, 0.05; p < 0.001), indicating a 3.7% per hour rise in GFAP concentration. There was no significant increase in either UCH-L1 or S100B in CT-positive patients (p = 0.15 and p = 0.47, respectively). GFAP concentrations increased 3.7% per hour among CT-positive patients whereas neither UCH-L1 nor S100B increased, compared with CT-negative patients. The kinetics and temporal profile of GFAP suggest it may be a more robust biomarker to detect patients with positive CT findings, particularly at later post-injury times. Further study is needed to determine if GFAP is a useful test to follow throughout a patient's clinical course.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app