JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Oral leptin supplementation throughout lactation in rats prevents later metabolic alterations caused by gestational calorie restriction.

OBJECTIVES: Calorie-restriction during gestation in rats has been seen to produce lasting detrimental effects in the offspring, affecting energy balance control and other related metabolic functions. Our aim was to assess whether leptin supplementation throughout lactation may prevent the dysmetabolic phenotype in adulthood associated with gestational calorie restriction.

METHODS: Three groups of male Wistar rats were followed: the offspring of ad libitum fed dams (controls); the offspring of 20% calorie-restricted dams during gestation (CR); and CR rats supplemented with physiological doses of leptin throughout lactation (CR-Leptin). Pups were weaned with a standard diet (SD) until 4 months of age, and then half of the animals of each group were moved to a Western diet (WD) until 6 months of age. Body weight and food intake were recorded. Energy expenditure, locomotive activity, blood parameters, liver triglycerides (TG), and gene expression and specific proteins in liver and white adipose tissue (WAT) were measured in adulthood.

RESULTS: Adult CR rats, but not CR-Leptin rats, displayed greater adiposity index and feed efficiency (both under SD) than controls, along with lower locomotive activity and energy expenditure, higher HOMA-IR index and greater circulating TG and leptin levels. CR animals also exhibited increased values of the respiratory exchange ratio and more severe signs of hepatic steatosis under WD than CR-Leptin animals. Gene expression analysis revealed that CR, but not CR-Leptin, animals displayed indicators of lower capacity for WAT expansion, along with decreased lipogenesis and lipolytic capacity under SD, and impaired lipogenic response of the liver to WD feeding, in accordance with diminished insulin sensitivity and WAT leptin signaling.

CONCLUSIONS: Oral leptin supplementation in physiological doses throughout lactation in rats prevents most of the detrimental effects on energy homeostasis and metabolic alterations in adulthood caused by inadequate fetal nutrition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app