Add like
Add dislike
Add to saved papers

Anomalous dissolution behavior of celecoxib in PVP/Isomalt solid dispersions prepared using spray drier.

Celecoxib is a COX II inhibitor NSAID which is used for joint pains, rheumatoid arthritis and osteoarthritis, however due to its poor water solubility it shows very low oral bioavailability. Using solid dispersion formulations is one of the most promising strategies to increase solubility of poorly water soluble drugs. The purpose of this study is dissolution enhancement of celecoxib by preparation of solid dispersions via spray drying technique using PVP and Isomalt as hydrophilic carriers. Different ratios of celecoxib, Isomalt and PVP K30 (7:3:0, 5:5:0, 3:7:0, 1:9:0 and 3:5:2, 3:2:5) were prepared from 2% hydroalcoholic solutions (70:30 ethanol:water) using spray drier. Particle size analyzing, saturation solubility, SEM, DSC, FT-IR, XRPD and dissolution studies in 0.25% SDS and 0.04M Na3 HPO4 mediums were performed. Stability of samples was also studied after a week and a month storage at 75% humidity condition. The results showed that the saturation solubility of celecoxib in solid dispersion samples is 20-30 folds higher than raw celecoxib. Similar results have been shown for dissolution studies. Solid state analyses showed glass solution state of celecoxib in PVP/Isomalt matrixes. FTIR studies exhibited the formation of hydrogen bonding between celecoxib and PVP in these samples. Spray dried celecoxib (amorphous celecoxib) without usage of carrier showed lower dissolution rate compare to its crystalline state (in 0.25% SDS dissolution medium) whilst these results is vise versa in Na3 PO4 dissolution medium. Interestingly almost all samples exhibited higher dissolution rate (in 0.25% SDS) after storage in 75% humidity. XRPD analysis demonstrated the crystallization of amorphous celecoxib after 1month storage. In general using PVP K30 and Isomalt as hydrophilic carriers could increase solubility and dissolution rate of celecoxib in solid dispersion formulations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app