Add like
Add dislike
Add to saved papers

Selective recording of neuroelectric activity from the peripheral nerve.

Electroneurograms (ENGs) from superficial regions of the sciatic nerve of a dog, innervating the tibialis anterior (TA) and gastrocnemius muscles (GM), arising mainly from muscle spindles and Golgi tendon organs were recorded selectively with an implanted 33-electrode spiral cuff (cuff). Relative positions of superficial regions within the cuff were defined by delivering stimulating pulses on groups of three electrodes (GTEs) within the cuff which were in contact with them. It was found that GTEs eliciting maximum contractions of muscles were GTE No. 3 for the TA muscle and GTE No. 8 for the GM muscle. In the first experiment the implanted leg was mounted into a special electronic brace. Extending forces were applied to the ankle rotating it by up to ±37° according to the neutral position, thus eliciting torques in the TA muscle of up to 1.2Nm. Channel 1 of the 4-channel preamplifier was connected to GTE No. 8, channel 2 to GTE No. 2, channel 3 to GTE No. 11 and channel 4 to GTE No. 5. Results show that only ENG recorded with GTE No. 8, being close to the region innervating the TA muscle, correspond to the mechanical load. In the second experiment the calcanean tendon (CT) of an implanted leg was dissected. The proximal end of the CT was connected to a force transducer and repetitive pull forces (about 12N) were applied to the CT. Channel 1 of the preamplifier was connected to GTE No. 5, channel 2 to GTE No. 1, channel 3 to the GTE No. 11 and channel 4 to GTE No. 8. Results show that only ENG recorded with GTE No. 5, being close to the region innervating the GM muscle, correspond to the mechanical load applied on CT.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app