Add like
Add dislike
Add to saved papers

Photoluminescence and electroluminescence of iridium(iii) complexes with 2',6'-bis(trifluoromethyl)-2,4'-bipyridine and 1,3,4-oxadiazole/1,3,4-thiadiazole derivative ligands.

Using 2',6'-bis(trifluoromethyl)-2,4'-bipyridine as a monoanionic cyclometalated ligand, 2-(5-(4-(trifluoromethyl)phenyl)-1,3,4-oxadiazol-2-yl)phenol and 2-(5-(4-(trifluoromethyl) phenyl)-1,3,4-thiadiazol-2-yl)phenol as ancillary ligands, two new heteroleptic iridium(iii) complexes (Ir1 and Ir2) were prepared and investigated. The ancillary ligand variations affected their emissions greatly, and the complexes Ir1 and Ir2 emitted green (503 nm) and orange (579 nm) lights, respectively. Moreover, the electron mobility of the two complexes is as high as that of the electron transport material Alq3 (tris-(8-hydroxyquinoline)aluminium), which is useful for their performances in organic light-emitting diodes (OLEDs). The OLEDs with Ir1 as the emitter showed excellent performances with a maximum current efficiency of 74.8 cd A-1 , a maximum external quantum efficiency of 27.0%, a maximum power efficiency of 33.4 lm W-1 , and the efficiency roll-off is mild. These results suggest that complexes with 1,3,4-oxadiazole/1,3,4-thiadiazole derivatives have potential application as efficient emitters in OLEDs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app