Add like
Add dislike
Add to saved papers

Noise Level Estimation for Natural Images Based on Scale-Invariant Kurtosis and Piecewise Stationarity.

Noise level estimation is crucial in many image processing applications such as blind image denoising. In this work, we propose a novel noise level estimation approach for natural images by jointly exploiting the piecewise stationarity and a regular property of the kurtosis in band-pass domains. We design a K-means based algorithm to adaptively partition an image into a series of non-overlapping regions, each of whose clean versions is assumed to be associated with a constant, but unknown kurtosis throughout scales. The noise level estimation is then cast into a problem to optimally fit this new kurtosis model. In addition, we develop a rectification scheme to further reduce the estimation bias through noise injection mechanism. Extensive experimental results show that our method can reliably estimate the noise level for a variety of noise types, and outperforms some state-of-the-art techniques, especially for non-Gaussian noises.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app