Add like
Add dislike
Add to saved papers

Laminin is instructive and calmodulin dependent kinase II is non-permissive for the formation of complex aggregates of acetylcholine receptors on myotubes in culture.

Previous work has shown that myotubes cultured on laminin-coated substrates form complex aggregates of synaptic proteins that are similar in shape and composition to neuromuscular junctions (NMJs). Here we show that laminin instructs the location of complex aggregates which form only on the lower surface when laminin is coated onto culture dishes but over the entire cell when laminin is added in solution. Silencing of myotubes by agents that block electrical activity (tetrodotoxin, verapamil) or by inhibitors of calmodulin dependent kinase (CaMKII) render the myotube permissive for the formation of complex aggregates. Treatment with laminin alone will facilitate the formation of complex aggregates hours later when myotubes are made permissive by inhibiting CaMKII. The AChR agonist carbachol disperses pre formed aggregates suggesting that non-permissiveness may involve active dispersal of AChRs. The permissive period requires ongoing protein synthesis. The latter may reflect a requirement for rapsyn, which turns over rapidly, and is necessary for aggregation. Consistent with this geldanamycin, an agent that increases rapsyn turnover disrupts complex aggregates. Agrin is well known to induce small clusters of AChRs but does not induce complex aggregates even though aggregate formation requires MuSK, a receptor tyrosine kinase activated by agrin. Dystroglycan (DG) is the major laminin receptor mediating complex aggregate formation with some contribution from β1 integrins. In addition, there is a pool of CaMKII associated with DG. We discuss how these permissive and instructive mechanisms bear on NMJ formation in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app