Add like
Add dislike
Add to saved papers

Photoexcited State Properties of Carbon Dots from Thermally Induced Functionalization of Carbon Nanoparticles.

Carbon dots are small carbon nanoparticles with various surface passivation schemes, in which more effective has been the deliberate chemical functionalization of the nanoparticles for brighter fluorescence emissions, though the synthesis method is more tedious and subject to some limitations in the selection of functionalization molecules. Another more popular synthesis method has been the carbonization of organic species, with the method being more efficient and versatile, but less controllable in the synthesis and for the desired dot structure and performance. In this work, a hybrid approach combining the advantageous characteristics of the two synthesis methods was applied to the preparation of carbon dots with polyethyleneimine (PEI) for surface passivation, where pre-processed and selected small carbon nanoparticles were functionalized with PEI in microwave-induced thermal reactions. The optical absorption and fluorescence emission properties were evaluated, and the results suggested that the carbon dots thus prepared shared the same photoexcited state characteristics with those from the deliberate chemical functionalization, including comparable fluorescence colors and other properties. A further demonstration on the similarity in photoexcited state properties was based on the same visible light-activated bactericidal functions of the PEI-carbon dots as those found in carbon dots from the deliberate chemical functionalization. The advantages and potential limitations of the hybrid approach for more controllable yet versatile and efficient syntheses of carbon dots are highlighted and discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app