JOURNAL ARTICLE

Behavior of tetracycline and sulfamethoxazole and their corresponding resistance genes in three-dimensional biofilm-electrode reactors with low current

Shuai Zhang, Hai L Song, Xiao L Yang, Xi Z Long, Xi Liu, Tong Q Chen
Journal of Environmental Science and Health. Part A, Toxic/hazardous Substances & Environmental Engineering 2017 March 21, 52 (4): 333-340
27925498
Antibiotics and antibiotic resistance genes (ARGs) have become major health concerns. In this study, three-dimensional biofilm-electrode reactors (3D-BERs) under low current were designed to assess their performance in removing tetracycline (TC) and sulfamethoxazole (SMX) from synthetic wastewater. In addition, the fates of the corresponding ARGs in microbial communities were investigated. The mass removal ratios of TC and SMX by the 3D-BERs were 82.6-97.3% and 72.2-93.2%, respectively. There were obvious increases in the relative abundances of all target genes after ∼2 months. The tet and sul genes were significantly upregulated by high concentrations of antibiotics in the cathode layer, and higher ARG levels were evident in the cathodes than in the anodes. High-throughput sequencing identified Methylotenera, Candidatus Accumulibacter, Limnohabitans, Dechloromonas, Crenothrix, and Caldilinea as the dominant genera in the samples at the end of the experiment, after ∼8 months, and these bacteria potentially exhibited antibiotic resistance. The relative abundances and compositions of the dominant microbial populations changed throughout the course of antibiotic removal in the 3D-BERs.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
27925498
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"