Add like
Add dislike
Add to saved papers

Modeling of Transmembrane Potential in Realistic Multicellular Structures before Electroporation.

Biophysical Journal 2016 November 16
Many approaches for studying the transmembrane potential (TMP) induced during the treatment of biological cells with pulsed electric fields have been reported. From the simple analytical models to more complex numerical models requiring significant computational resources, a gamut of methods have been used to recapitulate multicellular environments in silico. Cells have been modeled as simple shapes in two dimensions as well as more complex geometries attempting to replicate realistic cell shapes. In this study, we describe a method for extracting realistic cell morphologies from fluorescence microscopy images to generate the piecewise continuous mesh used to develop a finite element model in two dimensions. The preelectroporation TMP induced in tightly packed cells is analyzed for two sets of pulse parameters inspired by clinical irreversible electroporation treatments. We show that high-frequency bipolar pulse trains are better, and more homogeneously raise the TMP of tightly packed cells to a simulated electroporation threshold than conventional irreversible electroporation pulse trains, at the expense of larger applied potentials. Our results demonstrate the viability of our method and emphasize the importance of considering multicellular effects in the numerical models used for studying the response of biological tissues exposed to electric fields.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app