Add like
Add dislike
Add to saved papers

Noise-Weighted FBP Algorithm for Uniformly Attenuated SPECT Projections.

Noise-weighted FBP (filtered backprojection) algorithm and Bayesian FBP algorithm were developed recently for un-attenuated Radon transform, which have applications in x-ray CT (computed tomography). This paper extends the noise-weighted FBP algorithm to the case of uniformly attenuated Radon transform, and this extended FBP algorithm can be applied in uniformly attenuated SPECT (single photon emission computed tomography). Computer simulations and experimental data demonstrate that the proposed FBP algorithm has similar noise control capability as the iterative ML-EM (maximum likelihood expectation maximization) algorithm. In practice, the attenuator is rarely uniform. A stable FBP algorithm must be developed for non-uniform attenuators before the FBP algorithm can be applied in clinics when attenuation correction is required.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app