JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

RANKL induces Bach1 nuclear import and attenuates Nrf2-mediated antioxidant enzymes, thereby augmenting intracellular reactive oxygen species signaling and osteoclastogenesis in mice.

Reactive oxygen species (ROS) play a role in intracellular signaling during osteoclastogenesis. We previously reported that transcriptional factor nuclear factor E2-related factor 2 (Nrf2) was exported from the nucleus to the cytoplasm by receptor activator of nuclear factor-κB ligand (RANKL), and that Nrf2 negatively regulated osteoclastogenesis via antioxidant enzyme up-regulation. Knockout mice of BTB and CNC homology 1 (Bach1)-the competitor for Nrf2 in transcriptional regulation-was known to attenuate RANKL-mediated osteoclastogenesis, although the mechanism remains unclear. Therefore, we hypothesized that RANKL could be involved in the nuclear translocation of Bach1, which would attenuate Nrf2-mediated antioxidant enzymes, thereby augmenting intracellular ROS signaling in osteoclasts. RANKL induced Bach1 nuclear import and Nrf2 nuclear export. Induction of Bach1 nuclear export increased Nrf2 nuclear import, augmented antioxidant enzyme expression, and, thus, diminished RANKL-mediated osteoclastogenesis via attenuated intracellular ROS signaling. Finally, an in vivo mouse bone destruction model clearly demonstrated that induction of Bach1 nuclear export inhibited bone destruction. In this study, we report that RANKL favors osteoclastogenesis via attenuation of Nrf2-mediated antioxidant enzyme expression by competing with Bach1 nuclear accumulation. Of importance, induction of Bach1 nuclear export activates Nrf2-dependent antioxidant enzyme expression, thereby attenuating osteoclastogenesis. Bach1 nuclear export might be a therapeutic target for such bone destructive diseases as rheumatoid arthritis, osteoporosis, and periodontitis.-Kanzaki, H., Shinohara, F., Itohiya, K., Yamaguchi, Y., Katsumata, Y., Matsuzawa, M., Fukaya, S., Miyamoto, Y., Wada, S., Nakamura, Y. RANKL induces Bach1 nuclear import and attenuates Nrf2-mediated antioxidant enzymes, thereby augmenting intracellular reactive oxygen species signaling and osteoclastogenesis in mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app