Add like
Add dislike
Add to saved papers

Reference Genes for Addressing Gene Expression of Bladder Cancer Cell Models under Hypoxia: A Step Towards Transcriptomic Studies.

Highly aggressive, rapidly growing tumors contain significant areas of hypoxia or anoxia as a consequence of inadequate and/or irregular blood supply. During oxygen deprivation, tumor cells withstand a panoply of adaptive responses, including a shift towards anaerobic metabolism and the reprogramming of the transcriptome. One of the major mediators of the transcriptional hypoxic response is the hypoxia-inducible factor 1 (HIF-1), whose stabilization under hypoxia acts as an oncogenic stimulus contributing to chemotherapy resistance, invasion and metastasis. Gene expression analysis by qRT-PCR is a powerful tool for cancer cells phenotypic characterization. Nevertheless, as cells undergo a severe transcriptome remodeling.in response to oxygen deficit, the precise identification of reference genes poses a significant challenge for hypoxic studies. Herein, we aim to establish the best reference genes for studying the effects of hypoxia on bladder cancer cells. Accordingly, three bladder cancer cell lines (T24, 5637, and HT1376) representative of two distinct carcinogenesis pathways to invasive cancer (FGFR3/CCND1 and E2F3/RB1) were used. Additionally, we have explored the most suitable control gene when addressing the influence of Deferoxamine Mesilate salt (DFX), an iron chelator often used to avoid the proteasomal degradation of HIF-1α, acting as an hypoxia-mimetic agent. Using bioinformatics tools (GeNorm and NormFinder), we have elected B2M and HPRT as the most stable genes for all cell lines and experimental conditions out of a panel of seven putative candidates (HPRT, ACTB, 18S, GAPDH, TBP, B2M, and SDHA). These observations set the molecular basis for future studies addressing the effect of hypoxia and particularly HIF-1α in bladder cancer cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app