COMPARATIVE STUDY
JOURNAL ARTICLE

A comparison of kinematic-based gait event detection methods in a self-paced treadmill application

Brad D Hendershot, Caitlin E Mahon, Alison L Pruziner
Journal of Biomechanics 2016 December 8, 49 (16): 4146-4149
27825601
Kinematic-based algorithms for detecting gait events are efficient and useful in the absence of (reliable) kinetic data. However, the validity of these kinematic-based algorithms for self-paced treadmill walking is unknown, particularly given the influence of walking speed on such data. We quantified offsets in event detection of four foot kinematics-based algorithms (horizontal position, horizontal velocity, vertical velocity, and sagittal resultant velocity) relative to events determined by a threshold in vertical ground reaction force among seven uninjured individuals - and nine with unilateral transtibial amputation - walking on a self-paced treadmill. Across walking speeds from 0.48-1.64m/s (0.5-31.7% CV), offsets ranged from -7 to +3 frames (≈83.3ms) in heel strike, and -3 to +5 frames (≈66.6 ms) in toe off. Regardless of method, offsets in heel strike were not influenced (-0.01<r<0.01, all P>0.61) by variability in walking speed. However, offsets in toe-off were positively correlated with variability in walking speed for the horizontal position (r=0.539; P<0.001) and velocity (r=0.463; P<0.001) algorithms, and negatively correlated (r=-0.317; P<0.001) for the vertical velocity algorithm; offsets from the sagittal resultant velocity algorithm, with thresholds adjusted for walking speed, were not strongly associated (r=0.126; P=0.27). Although relatively minimal offsets support the applicability of these algorithms to self-paced walking, for individuals with asymptomatic and pathological gait patterns, sagittal resultant velocity of the foot produces the most consistent event detection over the widest range of (and variability in) walking speeds.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read
27825601
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"