Add like
Add dislike
Add to saved papers

Time From the Beginning of the Right Ventricle Isovolumetric Contraction to the Peak of the S Wave: A New TDI Indicator for the Non-Invasive Estimation of Pulmonary Hypertension.

BACKGROUND: Echocardiography is a key screening tool in the diagnostic algorithm of pulmonary hypertension (PH). In addition, tissue doppler imaging (TDI) is a promising method for the noninvasive estimation of pulmonary artery pressure (PAP).

OBJECTIVES: The aim of this study was to validate the accuracy of measuring the time from the beginning of the right ventricular isovolumetric contraction time (RV IVRT) to the peak of the S wave in the TDI of the base of the RV free wall (time to peak or TTP), as an indicator for the non-invasive estimation of pulmonary hypertension.

PATIENTS AND METHODS: In this diagnostic test study, 60 consecutive patients referred for right heart catheterization (RHC) were enrolled. A pulse-wave TDI was performed before the cardiac catheterization, with a mean interval of 1 hour between the two measurements. The TDI variables, such as the RV IVRT, myocardial performance index (MPI), and the new "time to peak" parameter, were measured at the lateral basal RV free wall. The patients were divided into two sub-groups according to the RHC findings: no-PH (mean PAP < 25 mmHg) and PH (mean PAP ≥ 25 mmHg) groups. Then, we calculated the specificity and sensitivity of the TDI parameters (including the TTP) for the diagnosis of PH.

RESULTS: In our study, the TTP showed a significant inverse relationship with the PAP. Based on our results, a TTP of less than 127 ms could be used to predict PH, with a sensitivity and specificity of about 70% (AUC = 0.746 ± 0.064).

CONCLUSIONS: Based on the results of this study, we suggest the use of a novel "time from the beginning of isovolumetric contraction to the peak of the S wave" (TTP) parameter in the TDI of the base of the RV free wall to predict PH with acceptable accuracy in comparison with RHC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app