JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Fatigue in Rapsyn-Deficient Zebrafish Reflects Defective Transmitter Release.

Journal of Neuroscience 2016 October 20
Rapsyn-deficient myasthenic syndrome is characterized by a weakness in voluntary muscle contraction, a direct consequence of greatly reduced synaptic responses that result from poorly clustered acetylcholine receptors. As with other myasthenic syndromes, the general muscle weakness is also accompanied by use-dependent fatigue. Here, we used paired motor neuron target muscle patch-clamp recordings from a rapsyn-deficient mutant line of zebrafish to explore for the first time the mechanisms causal to fatigue. We find that synaptic responses in mutant fish can follow faithfully low-frequency stimuli despite the reduced amplitude. This is in part helped by a compensatory increase in the number of presynaptic release sites in the mutant fish. In response to high-frequency stimulation, both wild-type and mutant neuromuscular junctions depress to steady-state response levels, but the latter shows exaggerated depression. Analysis of the steady-state transmission revealed that vesicle reloading and release at individual release sites is significantly slower in mutant fish during high-frequency activities. Therefore, reductions in postsynaptic receptor density and compromised presynaptic release collectively serve to reduce synaptic strength to levels that fall below the threshold for muscle action potential generation, thus accounting for use-dependent fatigue. Our findings raise the possibility that defects in motor neuron function may also be at play in other myasthenic syndromes that have been mapped to mutations in muscle-specific proteins.

SIGNIFICANCE STATEMENT: Use-dependent fatigue accompanies many neuromuscular myasthenic syndromes, including muscle rapsyn deficiency. Here, using a rapsyn-deficient line of zebrafish, we performed paired motor neuron target muscle patch-clamp recordings to investigate the mechanisms causal to this phenomenon. Our findings indicate that the reduced postsynaptic receptor density resulting from defective rapsyn contributes to weakness, but is not solely responsible for use-dependent fatigue. Instead, we find unexpected involvement of altered transmitter release from the motor neuron. Specifically, slowed reloading of vesicle release sites leads to augmented synaptic depression during repeated action potentials. Even at moderate stimulus frequencies, the depression levels for evoked synaptic responses fall below the threshold for the generation of muscle action potentials. The associated contraction failures are manifest as use-dependent fatigue.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app