Add like
Add dislike
Add to saved papers

Computer-aided detection of intracoronary stent in intravascular ultrasound sequences.

Medical Physics 2016 October
PURPOSE: An intraluminal coronary stent is a metal mesh tube deployed in a stenotic artery during percutaneous coronary intervention (PCI), in order to prevent acute vessel occlusion. The identification of struts location and the definition of the stent shape is relevant for PCI planning and for patient follow-up. The authors present a fully automatic framework for computer-aided detection (CAD) of intracoronary stents in intravascular ultrasound (IVUS) image sequences. The CAD system is able to detect stent struts and estimate the stent shape.

METHODS: The proposed CAD uses machine learning to provide a comprehensive interpretation of the local structure of the vessel by means of semantic classification. The output of the classification stage is then used to detect struts and to estimate the stent shape. The proposed approach is validated using a multicentric data-set of 1,015 images from 107 IVUS sequences containing both metallic and bioabsorbable stents.

RESULTS: The method was able to detect struts in both metallic stents with an overall F-measure of 77.7% and a mean distance of 0.15 mm from manually annotated struts, and in bioabsorbable stents with an overall F-measure of 77.4% and a mean distance of 0.09 mm from manually annotated struts.

CONCLUSIONS: The results are close to the interobserver variability and suggest that the system has the potential of being used as a method for aiding percutaneous interventions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app