Add like
Add dislike
Add to saved papers

Insight into the mechanism for the methanol synthesis via the hydrogenation of CO2 over a Co-modified Cu(100) surface: A DFT study.

A comprehensive density functional theory calculation was employed to investigate the reaction mechanism of methanol synthesis on a Co-modified Cu(100) surface via CO2 hydrogenation. The Cu(100) surface with embedded small Co clusters prepared experimentally was employed as a model system to explore the effects of Co dopant on the catalytic performance of Cu(100) surface towards CH3OH synthesis. The activation energy barriers and the reaction energies of 16 elementary surface reactions were determined. Our calculated results show that the most favorable reaction pathway for the hydrogenation of CO2 to CH3OH follows the sequence of CO2 → HCOO* →H2COO* →H2COOH* →H2CO* →H3CO* →H3COH*, and the OH* group hydrogenation to H2 O* is the rate-limiting step with an activation barrier of 112.3 kJ/mol. It is noted that, since the strength of Co-O bond is stronger than that of Cu-O bond, the introducing of Co dopant on the Cu surface can facilitate the formation of key intermediates for the CH3OH synthesis. Especially, the stability of the unstable dioxomethylene intermediate (H2COO*) found on the pure Cu(100) surface can be obviously enhanced on the Co-doped Cu(100) surface. As a result, with respect to the undoped surface, the productivity and selectivity towards CH3OH production on the Cu(100) surface will be improved after dispersing small Co clusters on the surface.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app