Add like
Add dislike
Add to saved papers

A bright carbon-dot-based fluorescent probe for selective and sensitive detection of mercury ions.

Talanta 2016 December 2
In this work, we demonstrated a convenient and green strategy for the synthesis of bright and water-soluble carbon dots (CDs) by carbonizing sodium citrate and glutathione together in a hydrothermal method for the first time. Without post surface modification, the as-synthesized CDs display fluorescence quantum yield (QY) as high as 21.03% and show superior stability not only in concentrated salt solutions but also in neutral and alkaline media. The probe exhibits selective and sensitive recognition capability towards mercury ion (Hg2+ ) in aqueous solution. The fluorescence of CDs can be quenched by Hg2+ through an effective electron energy transfer process. It displays a linear quenching effect toward mercury ion in the concentration range of 0-15μM with a correlation coefficient (R2 ) of 0.99. The limit of detection is determined to be 25nM at the signal to noise ratio of 3. These attractive merits would enable the extensive applications of this probe in environmental science and analytical chemistry in the future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app