JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Solute lean Ti-Nb-Fe alloys: An exploratory study.

In this study, we explored the Ti-Nb-Fe system to find an optimal cost-effective composition with the lowest elastic modulus and the lowest added Nb content. Six Ti-(31-4x)Nb-(1+0.5x)Fe ingots were prepared and Nb was substituted with Fe, starting at Ti-31Nb-1.0Fe and going up to Ti-11Nb-3.5Fe (wt%). The ingots were subjected to cold rolling, recrystallization and solution treatment, followed by water-quenching (WQ), furnace cooling (FC) or step-quenching to 350°C, which caused massive formation of isothermal ω phase. All the water-quenched alloys displayed athermal ω phase, which is apparently the result of fully collapsed β phase. The Fe content improved the compressive strength of the alloys. In the FC alloys, substitution with Fe favored the formation of α phase instead of ω phase, giving rise to a solute-rich β phase with a lattice parameter of 0.3249nm. Among the FC alloys, the lowest modulus of 83±4GPa was obtained in the Ti-19Nb-2.5Fe alloy, which exhibited fine and well dispersed α precipitation and absence of ω phase. DSC experiments indicated that the experimental alloys showed varying phase stability during heating.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app