Add like
Add dislike
Add to saved papers

Correlation between anti-PD-L1 tumor concentrations and tumor-specific and nonspecific biomarkers in a melanoma mouse model.

Oncotarget 2016 November 23
Blockade of PD-L1 with specific monoclonal antibodies (anti-PD-L1) represents a therapeutic strategy to increase the capability of the immune system to modulate the tumor immune-resistance. The relationship between anti-PD-L1 tumor exposition and anti-tumor effect represents a challenge that has been addressed in this work through the identification of certain biomarkers implicated in the antibody's mechanism of action, using a syngeneic melanoma mouse model. The development of an in-vitro/in-vivo platform has allowed us to investigate the PD-L1 behavior after its blockage with anti-PD-L1 at cellular level and in animals. In-vitro studies showed that the complex PD-L1/anti-PD-L1 was retained mainly at the cell surface. The antibody concentration and time exposure affected directly the recycling or ligand turnover. In-vivo studies showed that anti-PD-L1 was therapeutically active at all stage of the disease, with a rapid onset, a low but durable efficacy and non-relevant toxic effect. This efficacy measured as tumor shrinkage correlated with tumor-specific infiltrating lymphocytes (TILs), which increased as antibody tumor concentrations increased. Both, TILS and antibody concentrations followed similar kinetic patterns, justifying the observed anti-PD-L1 rapid onset. Interestingly, peripheral lymphocytes (PBLs) behave as infiltrating lymphocytes, suggesting that these PBLs might be considered as a possible biomarker for antibody activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app