JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A new perspective on delivery of red-near-infrared light therapy for disorders of the brain.

Discovery Medicine 2016 September
Red-near-infrared light has been used for a range of therapeutic purposes. However, clinical trials of near-infrared laser light for treatment of stroke were abandoned after failing interim futility analyses. Lack of efficacy has been attributed to sub-optimal treatment parameters and low penetrance of light to affected brain regions. Here, we assess penetrance of wavelengths from 450-880 nm in human post-mortem samples, and demonstrate that human skin, skull bone and brain transmits therapeutically relevant quantities of light from external sources at wavelengths above 600nm. Transmission through post-mortem skull bone was dependent upon thickness, and ranged from 5-12% at peak wavelengths of 700-850 nm. Transmission through brain tissue ranged from 1-7%, following an approximately linear relationship between absorbance and tissue thickness. Importantly, natural sunlight encompasses the wavelengths used in red-near-infrared light therapy. Calculations of the average irradiance of light delivered by sunlight demonstrate that sunlight can provide doses of light equivalent to -- and in some cases greater than -- those used in therapeutic trials. Natural sunlight could, therefore, be used as a source of therapeutic red-near-infrared light, but equally its contribution must be considered when assessing and controlling therapeutic dose in patients. For targets deep within the brain, it is unlikely that sufficient doses of light can be delivered trans-cranially; therapeutic light must be supplied via optical fibers or implanted light sources.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app