JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Stimulating TRPV1 externalization and synthesis in dorsal root ganglion neurons contributes to PGE2 potentiation of TRPV1 activity and nociceptor sensitization.

BACKGROUND: Persistent peripheral sensitization contributes to chronic pain. Plasticity of nociceptive dorsal root ganglion (DRG) neurons (nociceptors) induced by pro-inflammatory mediators contributes to sensitization. Prostaglandin E2 (PGE2) enriched in injured tissues is known not only directly to sensitize DRG neurons, but also to potentiate sensitizing effects of other pain mediators such as capsaicin and its receptor transient receptor potential vanilloid-1 (TRPV1). It remains unknown whether PGE2 potentiates TRPV1 activity by stimulating its synthesis, cell surface and axonal trafficking in DRG neurons.

METHODS: Combined biochemical, morphological, pharmacological and behavioral approaches have been used to address this issue in both in vitro and in vivo models.

RESULTS: PGE2 increased TRPV1 externalization in cultured rat DRG neurons in a time- and concentration-dependent manner, an event blocked by an inhibitor of protein synthesis or anterograde export. EP1 and EP4, but not EP2 and EP3, mediated this event. EP1 agonist-induced TRPV1 externalization was suppressed by inhibitors of CaMKII, PLC, PKC and PKCε, while EP4 agonist-induced TRPV1 externalization by inhibitors of cAMP/PKA and ERK/MAPK. Pre-exposure to PGE2 potentiated release of calcitonin gene-related peptide from cultured DRG neurons evoked by subsequent capsaicin stimulation. This event was blocked by an inhibitor of protein synthesis or export, suggesting that PGE2-induced TRPV1 synthesis and externalization is coupled to enhanced TRPV1 activity. Pre-exposure to PGE2 not only prolonged tactile allodynia evoked by subsequent capsaicin challenge, but also increased TRPV1 levels in L4-6 DRG, sciatic nerves and plantar skin.

CONCLUSIONS: Our data indicate that facilitating TRPV1 synthesis, cell surface and axonal trafficking is a novel mechanism underlying PGE2 potentiation of TRPV1 activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app