Add like
Add dislike
Add to saved papers

Plumbagin Suppresses the Invasion of HER2-Overexpressing Breast Cancer Cells through Inhibition of IKKα-Mediated NF-κB Activation.

HER2-overexpressing breast cancers account for about 30% of breast cancer occurrences and have been correlated with increased tumor aggressiveness and invasiveness. The nuclear factor-κB (NF-κB) is overexpressed in a subset of HER2-positive breast cancers and its upregulation has been associated with the metastatic potential of HER2-overexpressing tumors. The present study aimed at determining the potential of plumbagin, a naturally occurring naphthoquinone, to inhibit the invasion of HER2-overexpressing breast cancer cells and determine the involvement of NF-κB inhibition in plumbagin-mediated cell invasion suppression. In the present research we showed that plumbagin inhibited the transcriptional activity of NF-κB in HER2-positive breast cancer cells. The suppression of NF-κB activation corresponded with the inhibition of NF-κB p65 phosphorylation and downregulation of NF-κB-regulated matrix metalloproteinase 9 (MMP-9) expression. Plumbagin suppressed the invasion of HER2-overexpressing breast cancer cells and the inhibition of cell invasion was associated with the ability of plumbagin to inhibit NF-κB transcriptional activity. The silencing of NF-κB p65 increased the sensitivity of HER2-overexpressing breast cancer cells to plumbagin-induced cell invasion inhibition. NF-κB inhibition was associated with IκB kinase α (IKKα) activity suppression and inhibition of IκBα phosphorylation and degradation. The knockdown of IKKα resulted in increased sensitivity of HER2-positive cells to plumbagin-induced suppression of NF-κB transcriptional activity and expression of MMP-9. In conclusion, plumbagin inhibits the invasion of HER2-overexpressing breast cancer cells through the inhibition of IKKα-mediated NF-κB activation and downregulation of NF-κB-regulated MMP-9 expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app