Add like
Add dislike
Add to saved papers

A novel one-step synthesis for carbon-based nanomaterials from polyethylene terephthalate (PET) bottles waste.

Nowadays our planet suffers from an accumulation of plastic products that have the potential to cause great harm to the environment in the form of air, water, and land pollution. Plastic water bottles have become a great problem in the environment because of the large numbers consumed throughout the world. Certain types of plastic bottles can be recycled but most of them are not. This paper describes an economical solvent-free process that converts polyethylene terephthalate (PET) bottles waste into carbon nanostructure materials via thermal dissociation in a closed system under autogenic pressure together with additives and/or catalyst, which can act as cluster nuclei for carbon nanostructure materials such as fullerenes and carbon nanotubes. This research succeeded in producing and controlling the microstructure of various forms of carbon nanoparticles from the PET waste by optimizing the preparation parameters in terms of time, additives, and amounts of catalyst.

IMPLICATIONS: Plastic water bottles are becoming a growing segment of the municipal solid waste stream in the world; some are recycled but many are left in landfill sites. Recycling PET bottles waste can positively impact the environment in several ways: for instance, reduced waste, resource conservation, energy conservation, reduced greenhouse gas emissions, and decreasing the amount of pollution in air and water sources. The main novelty of the present work is based on the acquisition of high-value carbon-based nanomaterials from PET waste by a simple solvent-free chemical technique. Thus, the prepared materials are considered to be promising, cheap, eco-friendly materials that may find use in different applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app