Add like
Add dislike
Add to saved papers

Multimodal Imaging-Guided Antitumor Photothermal Therapy and Drug Delivery Using Bismuth Selenide Spherical Sponge.

ACS Nano 2016 October 5
Elaborately designed biocompatible nanoplatforms simultaneously having diverse therapeutic and imaging functions are highly desired for biomedical applications. Herein, a Bi2Se3 nanoagent with a special morphology as a nanoscale spherical sponge (NSS) has been fabricated and investigated in vitro and in vivo. The highly porous NSS exhibits strong, steady, and broad-band absorbance in the near-infrared range as well as high efficiency and stability of photothermal conversion, resulting in high antitumor efficacy for photothermal therapy (PTT). Together with a high X-ray attenuation coefficient (218% that of the clinically used iopromide), the NSS shows excellent performance on triple-modal high-contrast imaging, including X-ray-computed tomography, multispectral optoacoustic tomography, and infrared thermal imaging. Furthermore, the high surface area and porous structure impart the NSS a competent drug loading capability as high as 600% of that on Bi2Se3 nanoplates, showing a bimodal pH/photothermal sensitive drug release and pronounced synergetic effects of thermo-chemotherapy with a tumor inhibition ratio even higher than that of PTT alone (∼94.4% vs ∼66.0%). Meanwhile, the NSS is highly biocompatible with rather low in vitro/in vivo toxicity and high stability, at variance with easily oxidized Bi2Se3 nanoagents reported previously. Such biocompatible single-component theranostic nanoagents produced by a facile synthesis and highly integrated multimodal imaging and multiple therapeutic functions may have substantial potentials for clinical antitumor applications. This highly porous nanostructure with a large fraction of void space may allow versatile use of the NSS, for example, in catalysis, gas sensing, and energy storage, in addition to accommodating drugs and other biomolecules.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app