Add like
Add dislike
Add to saved papers

A Convenient Ultraviolet Irradiation Technique for Synthesis of Antibacterial Ag-Pal Nanocomposite.

In the present work, palygorskite (Pal) was initially subjected to an ion-exchange reaction with silver ions (Pal-Ag(+)). Subsequently, Ag-Pal nanocomposites were assembled by a convenient ultraviolet irradiation technique, using carbon dots (CDs) derived from wool fiber as the reducing agent. The obtained nanocomposites were characterized by powder X-ray diffraction (XRD), ultraviolet-visible (UV-vis) spectroscopy, transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy. The XRD patterns and UV-vis absorption spectra confirmed the formation of the Ag nanoparticles (NPs). Meanwhile, the TEM images showed that the Ag NPs, which exhibited sizes in the range of 3-7 nm, were located on the surface of the Pal nanofiber structures. Furthermore, the antibacterial activity of the nanocomposites was evaluated against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria by applying the disc diffusion method and minimum inhibitory concentration test. Owing to their good antibacterial properties, the Ag-Pal nanocomposites are considered to be a promising bactericide with great potential applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app