Add like
Add dislike
Add to saved papers

Identifying candidates for targeted gait rehabilitation after stroke: better prediction through biomechanics-informed characterization.

BACKGROUND: Walking speed has been used to predict the efficacy of gait training; however, poststroke motor impairments are heterogeneous and different biomechanical strategies may underlie the same walking speed. Identifying which individuals will respond best to a particular gait rehabilitation program using walking speed alone may thus be limited. The objective of this study was to determine if, beyond walking speed, participants' baseline ability to generate propulsive force from their paretic limbs (paretic propulsion) influences the improvements in walking speed resulting from a paretic propulsion-targeting gait intervention.

METHODS: Twenty seven participants >6 months poststroke underwent a 12-week locomotor training program designed to target deficits in paretic propulsion through the combination of fast walking with functional electrical stimulation to the paretic ankle musculature (FastFES). The relationship between participants' baseline usual walking speed (UWSbaseline), maximum walking speed (MWSbaseline), and paretic propulsion (propbaseline) versus improvements in usual walking speed (∆UWS) and maximum walking speed (∆MWS) were evaluated in moderated regression models.

RESULTS: UWSbaseline and MWSbaseline were, respectively, poor predictors of ΔUWS (R (2)  = 0.24) and ΔMWS (R (2)  = 0.01). Paretic propulsion × walking speed interactions (UWSbaseline × propbaseline and MWSbaseline × propbaseline) were observed in each regression model (R (2) s = 0.61 and 0.49 for ∆UWS and ∆MWS, respectively), revealing that slower individuals with higher utilization of the paretic limb for forward propulsion responded best to FastFES training and were the most likely to achieve clinically important differences.

CONCLUSIONS: Characterizing participants based on both their walking speed and ability to generate paretic propulsion is a markedly better approach to predicting walking recovery following targeted gait rehabilitation than using walking speed alone.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app