Add like
Add dislike
Add to saved papers

Data Acquisition System for In Situ Monitoring of Chemoelectrical Potential in Living Plant Fuel Cells.

Photosynthesis process in plants generates numerous sources of bioenergy. However, only a small fraction is readily exploited for electrical energy. The impact of environmental factors is one of the significant physiological influences on the electrical potential of the plants. Hence, we developed a data acquisition (DAQ) system for instantaneous monitoring of electrical potential in plants and Aloe vera was used as a plant sample. The static response characterization, capability index (P/T), and Pearson's coefficient of correlation procedures were applied to assess the reliability of the obtained data. This developed system offers the capability of in situ monitoring and detecting gradual changes in the electrical potential of plants up to a correlational strength of greater than 0.7. Interpretation of the electrical signal mechanisms in the Aloe vera plant and the optimization of the electricity can be achieved through the application of this monitoring system. This system, therefore, can serve as a tool to measure and analyze the electrical signals in plants at different conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app