Add like
Add dislike
Add to saved papers

The role of cerebral blood flow gradient in peritumoral edema for differentiation of glioblastomas from solitary metastatic lesions.

Oncotarget 2016 October 19
OBJECTIVE: Differentiation of glioblastomas from solitary brain metastases using conventional MRI remains an important unsolved problem. In this study, we introduced the conception of the cerebral blood flow (CBF) gradient in peritumoral edema-the difference in CBF values from the proximity of the enhancing tumor to the normal-appearing white matter, and investigated the contribution of perfusion metrics on the discrimination of glioblastoma from a metastatic lesion.

MATERIALS AND METHODS: Fifty-two consecutive patients with glioblastoma or a solitary metastatic lesion underwent three-dimensional arterial spin labeling (3D-ASL) before surgical resection. The CBF values were measured in the peritumoral edema (near: G1; Intermediate: G2; Far: G3). The CBF gradient was calculated as the subtractions CBFG1 -CBFG3, CBFG1 - CBFG2 and CBFG2 - CBFG3. A receiver operating characteristic (ROC) curve analysis was used to seek for the best cutoff value permitting discrimination between these two tumors.

RESULTS: The absolute/related CBF values and the CBF gradient in the peritumoral regions of glioblastomas were significantly higher than those in metastases(P < 0.038). ROC curve analysis reveals, a cutoff value of 1.92 ml/100g for the CBF gradient of CBFG1 -CBFG3 generated the best combination of sensitivity (92.86%) and specificity (100.00%) for distinguishing between a glioblastoma and metastasis.

CONCLUSION: The CBF gradient in peritumoral edema appears to be a more promising ASL perfusion metrics in differentiating high grade glioma from a solitary metastasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app