JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Rice NAC transcription factor ONAC095 plays opposite roles in drought and cold stress tolerance.

BMC Plant Biology 2016 September 21
BACKGROUND: The NAC (NAM, ATAF and CUC) transcriptional factors constitute a large family with more than 150 members in rice and some of them have been demonstrated to play crucial roles in plant abiotic stress response. Here, we report the characterization of a rice stress-responsive NAC gene, ONAC095, and the exploration of its function in drought and cold stress tolerance.

RESULTS: Expression of ONAC095 was up-regulated by drought stress and abscisic acid (ABA) but down-regulated by cold stress. ONAC095 protein had transactivation activity and the C2 domain in C-terminal was found to be critical for transactivation activity. Transgenic rice lines with overexpression of ONAC095 (ONAC095-OE) and dominant chimeric repressor-mediated suppression of ONAC095 (ONAC095-SRDX) were generated. The ONAC095-OE plants showed comparable phenotype to wild type under drought and cold stress conditions. However, the ONAC095-SRDX plants displayed an improved drought tolerance but exhibited an attenuated cold tolerance. The ONAC095-SRDX plants had decreased water loss rate, increased proline and soluble sugar contents, and up-regulated expression of drought-responsive genes under drought condition, whereas the ONAC095-SRDX plants accumulated excess reactive oxygen species, increased malondialdehyde content and down-regulated expression of cold-responsive genes under cold condition. Furthermore, ONAC095-SRDX plants showed an increased ABA sensitivity, contained an elevated ABA level, and displayed altered expression of ABA biosynthetic and metabolic genes as well as some ABA signaling-related genes.

CONCLUSION: Functional analyses through dominant chimeric repressor-mediated suppression of ONAC095 demonstrate that ONAC095 plays opposite roles in drought and cold stress tolerance, acting as a negative regulator of drought response but as a positive regulator of cold response in rice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app