JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Neurologic Phenotypes Associated with Mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR1, and IFIH1: Aicardi-Goutières Syndrome and Beyond.

Neuropediatrics 2016 December
The Aicardi-Goutières syndrome (AGS) was first described in 1984, and over the following years was defined by the clinical and radiological features of an early onset, severe, neurologic disorder with intracranial calcification, leukoencephalopathy, and cerebral atrophy, usually associated with a cerebrospinal fluid (CSF) pleocytosis and elevated CSF interferon α activity. It is now recognized that mutations in any of the following seven genes may result in the classical AGS phenotype: TREX1 (AGS1), RNASEH2A (AGS2), RNASEH2B (AGS3), RNASEH2C (AGS4), SAMHD1 (AGS5), ADAR1 (AGS6), and IFIH1 (AGS7). All of these genes encode proteins involved in nucleotide metabolism and/or sensing. Mutations in these genes result in the induction of type 1 interferon production and an upregulation of interferon stimulated genes. As more patients harboring mutations in these genes have been described, in particular facilitated by the advent of whole exome sequencing, a remarkably broad spectrum of associated neurologic phenotypes has been revealed, which we summarize here. We propose that the term AGS has continued clinical utility in the designation of a characteristic phenotype, which suggests relevant diagnostic investigations and can inform outcome predictions. However, we also suggest that the use of the term "type 1 interferonopathy" is appropriate for the wider spectrum of disease consequent upon dysfunction of these genes and proteins since it implies the possibility of a common "anti-interferon" approach to therapy as such treatments become available.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app