Add like
Add dislike
Add to saved papers

A new biological process for short-chain fatty acid generation from waste activated sludge improved by Clostridiales enhancement.

Short-chain fatty acids (SCFAs), the carbon source of biological nutrient removal, can be produced by waste activated sludge (WAS) anaerobic fermentation. To get more SCFAs from sludge, most studies in literature focused on the mechanical process control or the structure of microbial community; little attention has been paid to the key microorganisms and their function related to SCFA generation. In this study, a different sludge pretreated method, i.e., pretreating sludge by proteinase K for 2 days followed by pretreating at pH 10 for 4 days, is reported, by which the proportion of Clostridiales was increased and SCFA generation was enhanced. First, the effects of different proteinase K concentrations and initial pH on sludge hydrolysis and SCFA generation were investigated. The optimal conditions showed the highest SCFA generation (352.91 mg COD per gram of volatile suspended solids), which was 2.89-fold of the blank (un-pretreated). Further, the new biological pretreatment process led to the conversion of other SCFAs to acetic acid. Acetic acid accounted for 60.8 % of total SCFAs with the new biological pretreatment process compared with 44.9 % in the blank test. Then, the investigation on the key microorganisms related to SCFA production with 16S rRNA gene clone library and fluorescence in situ hybridization (FISH) indicated that there were much greater active Clostridiales when SCFAs were generated with the proteinase K and pH 10 pretreated sludge. Further, the mechanisms for the optimal conditions significantly enhancing SCFA generation were investigated. It was found that pretreating sludge by proteinase K and pH 10 caused the greatest key enzyme activities, organic consumption, and inhibition of methane generation. Graphical abstract A new biological process for short-chain fatty acid generation from waste activated sludge improved by Clostridiales enhancement.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app