Add like
Add dislike
Add to saved papers

Effect of Fine Particulate Matter (PM2.5) on Rat Placenta Pathology and Perinatal Outcomes.

BACKGROUND Fine particulate matter with aerodynamic diameters smaller than 2.5 μm (PM2.5) has been reported to cause adverse effects on human health. Evidence has shown the association between PM2.5 exposure and adverse perinatal outcomes, and the most common method is epidemiological investigation. We wished to investigate the impact of PM2.5 on placenta and prenatal outcomes and its related mechanisms in a rat model. MATERIAL AND METHODS Pregnant rats were exposed to a low PM2.5 dose (15 mg/kg) with intratracheal instillation at pregnant day 10 and day 18, while the controls received an equivalent volume normal saline. All rats received cesarean section 24 h after the last intratracheal instillation and were sacrificed with anesthesia. Blood routine tests (BRT) and interleukin-6 (IL-6) were detected for analyzing inflammation and blood coagulation. Placenta tissue sections underwent pathologic examination, and the levels of homogenate glutathione peroxidase (GSH-Px) and methane dicarboxylic aldehyde (MDA) were determined for oxidative stress estimation. RESULTS Increased absorbed blastocysts, and lower maternal weight gain and fetal weight were found in the PM2.5 exposure group compared to controls (p<0.05). Exposure to PM2.5 caused a significant increase of blood mononuclear cells (PBMC), platelets, and IL-6 levels (P<0.01). There were no differences in GSH-Px and MDA of placenta homogenate between the 2 groups (P>0.05). Placenta pathological examination demonstrated thrombus and chorioamnionitis in the PM2.5 exposure group. CONCLUSIONS PM2.5 exposure can result in placental pathological changes and adverse perinatal outcomes. The placental inflammation and hypercoagulability with vascular thrombosis may play important roles in placental impairment, but oxidative stress appears to be less important.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app