JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., INTRAMURAL
Add like
Add dislike
Add to saved papers

Tandemly Integrated HPV16 Can Form a Brd4-Dependent Super-Enhancer-Like Element That Drives Transcription of Viral Oncogenes.

MBio 2016 September 14
UNLABELLED: In cancer cells associated with human papillomavirus (HPV) infections, the viral genome is very often found integrated into the cellular genome. The viral oncogenes E6 and E7 are transcribed from the viral promoter, and integration events that alter transcriptional regulation of this promoter contribute to carcinogenic progression. In this study, we detected highly enriched binding of the super-enhancer markers Brd4, MED1, and H3K27ac, visible as a prominent nuclear focus by immunofluorescence, at the tandemly integrated copies of HPV16 in cells of the cervical neoplasia cell line W12 subclone 20861. Tumor cells are often addicted to super-enhancer-driven oncogenes and are particularly sensitive to disruption of transcription factor binding to the enhancers. Treatment of 20861 cells with bromodomain inhibitors displaced Brd4 from the HPV integration site, greatly decreased E6/E7 transcription, and inhibited cellular proliferation. Thus, Brd4 activates viral transcription at this integration site, and strong selection for E6/E7 expression can drive the formation of a super-enhancer-like element to promote oncogenesis.

IMPORTANCE: Oncogenic human papillomaviruses play an essential role in the development of cervical cancer, and growth of these cancer cells requires continued expression of the viral E6 and E7 oncogenes. Integration of the virus into the host genome often results in deregulation of E6 and E7 expression, which provides a selective growth advantage and increases genetic instability of infected cells. We show here that tandemly integrated copies of the viral genome can form a super-enhancer-like element that drives E6/E7 transcription. Targeted disruption of factors binding to this element decreases viral transcription and causes cell death. Thus, cancer cells that harbor integrated HPV could be targeted by therapeutics that disrupt super-enhancer function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app