RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Effects of lipid packing on polymorphic phase behavior and membrane properties.
The self assembly of phospholipid molecules in the bilayer form was considered in terms of equivalent molecular shapes representing intermolecular forces. The equivalent size of each phospholipid headgroup was approximated by the net atomic volume plus the volume of the associated water molecules, which was derived from water/hydrocarbon partitioning experiments. The equivalent lengths of unsaturated acyl chains were derived from the retention time data from chromatographic measurements. The spontaneous curvature of various phospholipid monolayers was calculated from their equivalent molecular shapes, and the energy required to flatten them to the bilayer plane was calculated, using the known bending modulus. With increasing bending energy, the mixtures showed increasing susceptibility to phospholipase A2, facilitated lipid transfer rate by phospholipid exchange proteins, permeability to carboxyfluorescein, incorporation of human erythrocyte proteins, and calcium transport by Ca-ATPase from sarcoplasmic reticulum in reconstituted vesicles. When the calculation was applied to known lipid compositions of nine cellular membranes, the protein/lipid ratio and phospholipid/cholesterol ratio were found to have a positive and a negative correlation, respectively, with the latent bending energy of the phospholipids. The energy expense in conforming to a bilayer phase may be an important physical parameter regarding the activity and the biogenesis of membranes.
Full text links
Trending Papers
Management of Heart Failure With Preserved Ejection Fraction in Elderly Patients: Effectiveness and Safety.Curēus 2023 Februrary
What's New in the Treatment of Non-Alcoholic Fatty Liver Disease (NAFLD).Journal of Clinical Medicine 2023 Februrary 27
BTS clinical statement on aspiration pneumonia.Thorax 2023 Februrary
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app