JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Modulation of the Direction and Magnitude of Hebbian Plasticity in Human Motor Cortex by Stimulus Intensity and Concurrent Inhibition.

Brain Stimulation 2017 January
BACKGROUND: The mechanisms mediating the efficacy and variability of paired associative stimulation (PAS), thought to be mediated by Hebbian plasticity, remain incompletely understood. The magnitude and direction of Hebbian plasticity may be modulated by the level of neural depolarisation, which is influenced by stimulation intensity and interactions with cortical circuits.

HYPOTHESIS: PAS effects would be influenced by the intensity of transcranial magnetic stimulation (TMS) and interaction with other circuits. In particular, PAS would be inhibited by concurrent inhibitory input following median nerve stimulation, known as short latency afferent inhibition (SAI).

METHODS: PAS was tested at an interstimulus interval (ISI) 2 ms or 6 ms longer than the N20 peak of the median nerve somatosensory-evoked potential (PASN20+2 , PASN20+6 ). PASN20+2 was tested at three different TMS intensities. Short interval intracortical facilitation and inhibition were tested in the presence of SAI (SICFSAI , SICISAI ).

RESULTS: The propensity for long term potentiation like effects increased with higher PASN20+2 TMS stimulus intensity, whereas long term depression like effects ensued at subthreshold intensity. Stronger SAI correlated with weaker PAS LTP-like effects across individuals. PASN20+2 (maximal SAI) was less effective than PASN20+6 (weak SAI). SICFSAI or SICISAI did not influence PAS response.

CONCLUSION: Inter-individual differences in SAI contribute to the variability in PAS efficacy. The magnitude and direction of PAS effects is modulated by TMS intensity. Together, these findings indicate that the level of neural activity induced by stimulation likely plays a crucial role in determining the direction and magnitude of Hebbian plastic effects evoked by PAS in human cortex.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app